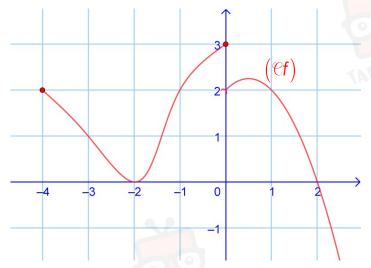
EXERCICE 1(5pts)

Dans la figure ci-dessous on a représenté dans un repère orthogonal la courbe (4) d'une fonction f définie sur $[-4,+\infty[$.



- 1. On admet que pour tout $x \in]0, +\infty[$, $f(x) = ax^2 + bx + 2$.
 - a- Montrer que a = -1 et b = 1.
 - b- Déterminer f([-1,1]) et $f([0,+\infty[)$.
- Résoudre dans \mathbb{R} l'équation E(f(x)) = 2.
- 3. Soit g la fonction définie par $g(x) = \frac{1}{2 f(x)}$.
 - a- Déterminer l'ensemble de définition de g.
 - b- Déterminer le sens de variation de g sur -4,-2.

EXERCICE 2 (7pts)

Soit la fonction f définie sur \mathbb{R} par $f(x) = \begin{cases} x^3 + 3x^2 + x - 1 & \text{si } x \in]0, +\infty[\\ \frac{\sqrt{x^4 + x^2 + 1}}{x^2 + 1} & \text{si } x \in]-\infty, 0] \end{cases}$.

- 1. a- Montrer que l'équation f(x) = 1 admet une solution α dans $\left| \frac{1}{3}, 1 \right|$.
 - b- Vérifier que pour tout $x \in \mathbb{R}$, $x^3 + 3x^2 + x 2 = (x+2)(x^2 + x 1)$.
 - c- Déterminer la valeur exacte de α.
- 2. a- Montrer que pour tout $x \in]-\infty,0]$, $\sqrt{x^4 + x^2 + 1} \le x^2 + 1$.
 - b- Déduire que f est majorée par 1.
 - c- Montrer que 1 est le maximum de f sur $]-\infty,0]$.

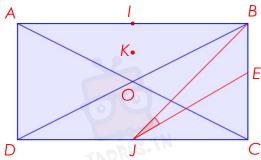
- 3. a- Montrer que f est minorée par -1 sur $]0,+\infty[$.
 - b- Montrer que $\frac{\sqrt{3}}{2}$ est le minimum de f sur $]-\infty,0]$.
 - c- Résoudre dans \mathbb{R} l'équation f(x) = -3.

EXERCICE 3 (8pts)

Soit ABCD un rectangle de centre O tel que AB = 8 et AD = 4.

On désigne par I, J et K les milieux respectifs des segments [AB], [DC] et [OI].

On note E le point de [BC] tel que $\widehat{EJC} = \frac{\pi}{4}$.



- 1. a- Calculer JB, JE et EC.
 - b- Montrer que $\overrightarrow{JE}.\overrightarrow{JB} = 16\left(\frac{1+\sqrt{3}}{\sqrt{3}}\right)$.
 - c- Déduire que $\cos\left(\frac{\pi}{12}\right) = \frac{\sqrt{2} + \sqrt{6}}{4}$.
- 2. a- Montrer que pour tout point M du plan $\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MC}.\overrightarrow{MD} = 2\overrightarrow{MO}^2 24$.
 - b- Calculer $\overrightarrow{KA}.\overrightarrow{KB}$ et déduire $\overrightarrow{KC}.\overrightarrow{KD}$.
 - c- Déterminer l'ensemble (%) des points M du plan tels $\overrightarrow{MA}.\overrightarrow{MB} + \overrightarrow{MC}.\overrightarrow{MD} = -22$.
- 3. a- Montrer que KD.KB = -19.
 - b- Déterminer l'ensemble (Δ) des points M du plan $\overrightarrow{KD}.\overrightarrow{KM} = -19$.
- 4. a- Montrer que pour tout point M du plan $MA^2 + MB^2 + MC^2 + MD^2 = 4MO^2 + 80$.
 - b- Déterminer l'ensemble (Γ) des points M du plan $MA^2 + MB^2 + MC^2 + MD^2 = 160$.

